临时提交
BIN
resources/add.jpg
Normal file
|
After Width: | Height: | Size: 1.8 KiB |
BIN
resources/bgv.jpg
Normal file
|
After Width: | Height: | Size: 245 KiB |
|
Before Width: | Height: | Size: 1.3 MiB |
BIN
resources/comment.jpg
Normal file
|
After Width: | Height: | Size: 1007 B |
BIN
resources/like.jpg
Normal file
|
After Width: | Height: | Size: 903 B |
|
Before Width: | Height: | Size: 1.7 KiB |
BIN
resources/more.jpg
Normal file
|
After Width: | Height: | Size: 1.3 KiB |
BIN
resources/search.jpg
Normal file
|
After Width: | Height: | Size: 1023 B |
@@ -1,109 +1,218 @@
|
|||||||
import os
|
import os
|
||||||
import time
|
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image
|
import imutils
|
||||||
|
|
||||||
|
|
||||||
# 工具类
|
# 工具类
|
||||||
class AiTools(object):
|
class AiTools(object):
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def find_image_in_image(
|
def find_image_in_image(cls, big_image_path, small_image_path, threshold=0.6, use_multiscale=True, scale_range=(0.7, 1.3), scale_steps=10, visualize=True, enable_subpixel=True, preprocess='histogram'):
|
||||||
cls,
|
# 读取大图和小图
|
||||||
smallImageUrl,
|
large_image = cv2.imread(big_image_path)
|
||||||
bigImageUrl,
|
small_image = cv2.imread(small_image_path)
|
||||||
match_threshold=0.90,
|
|
||||||
consecutive_required=3,
|
|
||||||
scales=None
|
|
||||||
):
|
|
||||||
|
|
||||||
if scales is None:
|
if large_image is None or small_image is None:
|
||||||
scales = [0.5, 0.75, 1.0, 1.25, 1.5]
|
print(f"无法加载图像,请检查路径是否正确!\n大图路径: {big_image_path}\n小图路径: {small_image_path}")
|
||||||
|
return -1, -1
|
||||||
|
|
||||||
template = cv2.imread(smallImageUrl, cv2.IMREAD_COLOR)
|
# 打印图像尺寸信息
|
||||||
# if template is None:
|
print(f"大图尺寸: {large_image.shape[1]}x{large_image.shape[0]}")
|
||||||
# raise Exception(f"❌ 无法读取模板 '{smallImageUrl}'")
|
print(f"小图尺寸: {small_image.shape[1]}x{small_image.shape[0]}")
|
||||||
|
|
||||||
template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)
|
# 图像预处理函数
|
||||||
|
def preprocess_image(image, method='histogram'):
|
||||||
|
if method == 'histogram':
|
||||||
|
# 直方图均衡化
|
||||||
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||||
|
equalized = cv2.equalizeHist(gray)
|
||||||
|
return equalized
|
||||||
|
elif method == 'blur':
|
||||||
|
# 高斯模糊
|
||||||
|
blurred = cv2.GaussianBlur(image, (5, 5), 0)
|
||||||
|
gray = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY)
|
||||||
|
return gray
|
||||||
|
elif method == 'edge':
|
||||||
|
# 边缘检测
|
||||||
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||||
|
edges = cv2.Canny(gray, 100, 200)
|
||||||
|
return edges
|
||||||
|
elif method == 'sharp':
|
||||||
|
# 锐化
|
||||||
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||||
|
kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
|
||||||
|
sharpened = cv2.filter2D(gray, -1, kernel=kernel)
|
||||||
|
return sharpened
|
||||||
|
else:
|
||||||
|
# 默认转为灰度图
|
||||||
|
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||||
|
|
||||||
cap = cv2.imread(bigImageUrl, cv2.IMREAD_COLOR)
|
# 预处理图像
|
||||||
# if not cap.isOpened():
|
large_image_gray = preprocess_image(large_image, preprocess)
|
||||||
# print(f"❌ 无法打开视频流: {bigImageUrl}")
|
small_image_gray = preprocess_image(small_image, preprocess)
|
||||||
# return None
|
|
||||||
|
|
||||||
detected_consecutive_frames = 0
|
best_match_val = -1
|
||||||
|
best_match_loc = (-1, -1)
|
||||||
|
best_scale = 1.0
|
||||||
|
best_method = None
|
||||||
|
best_method_enum = None
|
||||||
|
|
||||||
print("🚀 正在检测爱心图标...")
|
# 定义要尝试的匹配方法
|
||||||
while True:
|
match_methods = [
|
||||||
print("死了")
|
(cv2.TM_CCOEFF, 'TM_CCOEFF'),
|
||||||
ret, frame = cap.read()
|
(cv2.TM_CCOEFF_NORMED, 'TM_CCOEFF_NORMED'),
|
||||||
if not ret or frame is None:
|
(cv2.TM_CCORR, 'TM_CCORR'), # 添加这个方法
|
||||||
time.sleep(0.01)
|
(cv2.TM_CCORR_NORMED, 'TM_CCORR_NORMED'),
|
||||||
continue
|
(cv2.TM_SQDIFF, 'TM_SQDIFF'),
|
||||||
print("哈哈哈")
|
(cv2.TM_SQDIFF_NORMED, 'TM_SQDIFF_NORMED')
|
||||||
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
]
|
||||||
|
|
||||||
|
if use_multiscale:
|
||||||
|
# 多尺度匹配
|
||||||
|
small_height, small_width = small_image_gray.shape
|
||||||
|
scale_step = (scale_range[1] - scale_range[0]) / scale_steps
|
||||||
|
scales = [scale_range[0] + i * scale_step for i in range(scale_steps + 1)]
|
||||||
|
print(f"多尺度匹配范围: {scales}")
|
||||||
|
|
||||||
current_frame_has_match = False
|
|
||||||
best_match_val = 0
|
|
||||||
best_match_loc = None
|
|
||||||
best_match_w_h = None
|
|
||||||
print("aaaaaaaaaaaa")
|
|
||||||
for scale in scales:
|
for scale in scales:
|
||||||
resized_template = cv2.resize(template_gray, (0, 0), fx=scale, fy=scale)
|
# 调整小图大小
|
||||||
th, tw = resized_template.shape[:2]
|
new_width = int(small_width * scale)
|
||||||
|
new_height = int(small_height * scale)
|
||||||
if th > frame_gray.shape[0] or tw > frame_gray.shape[1]:
|
if new_width < 10 or new_height < 10: # 防止图像太小
|
||||||
continue
|
continue
|
||||||
|
# 使用INTER_AREA插值方法提高缩放精度
|
||||||
|
resized_small = cv2.resize(small_image_gray, (new_width, new_height), interpolation=cv2.INTER_AREA)
|
||||||
|
print(f"尝试尺度: {scale}, 调整后小图尺寸: {new_width}x{new_height}")
|
||||||
|
|
||||||
result = cv2.matchTemplate(frame_gray, resized_template, cv2.TM_CCOEFF_NORMED)
|
# 尝试多种匹配方法
|
||||||
_, max_val, _, max_loc = cv2.minMaxLoc(result)
|
for method in [cv2.TM_CCOEFF_NORMED, cv2.TM_CCORR_NORMED, cv2.TM_SQDIFF_NORMED]:
|
||||||
|
method_name = 'TM_CCOEFF_NORMED' if method == cv2.TM_CCOEFF_NORMED else 'TM_CCORR_NORMED' if method == cv2.TM_CCORR_NORMED else 'TM_SQDIFF_NORMED'
|
||||||
|
result = cv2.matchTemplate(large_image_gray, resized_small, method)
|
||||||
|
if method == cv2.TM_SQDIFF_NORMED:
|
||||||
|
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
|
||||||
|
current_val = 1 - min_val # 转换为类似其他方法的值
|
||||||
|
current_loc = min_loc
|
||||||
|
else:
|
||||||
|
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
|
||||||
|
current_val = max_val
|
||||||
|
current_loc = max_loc
|
||||||
|
|
||||||
if max_val > best_match_val:
|
print(f" 方法: {method_name}, 匹配值: {current_val:.6f}")
|
||||||
best_match_val = max_val
|
if current_val > best_match_val:
|
||||||
best_match_loc = max_loc
|
best_match_val = current_val
|
||||||
best_match_w_h = (tw, th)
|
best_match_loc = current_loc
|
||||||
if max_val >= match_threshold:
|
best_scale = scale
|
||||||
current_frame_has_match = True
|
best_method = method_name
|
||||||
print("break 了")
|
best_method_enum = method
|
||||||
break
|
else:
|
||||||
print("bbbbbbbbbbbbbbbbbbbbbb")
|
# 单一尺度匹配,但尝试多种方法
|
||||||
if current_frame_has_match:
|
for method in [cv2.TM_CCOEFF_NORMED, cv2.TM_CCORR_NORMED, cv2.TM_SQDIFF_NORMED]:
|
||||||
print("111111")
|
method_name = 'TM_CCOEFF_NORMED' if method == cv2.TM_CCOEFF_NORMED else 'TM_CCORR_NORMED' if method == cv2.TM_CCORR_NORMED else 'TM_SQDIFF_NORMED'
|
||||||
detected_consecutive_frames += 1
|
result = cv2.matchTemplate(large_image_gray, small_image_gray, method)
|
||||||
last_detection_info = (best_match_loc, best_match_w_h, best_match_val)
|
if method == cv2.TM_SQDIFF_NORMED:
|
||||||
else:
|
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
|
||||||
print("2222222")
|
current_val = 1 - min_val # 转换为类似其他方法的值
|
||||||
detected_consecutive_frames = 0
|
current_loc = min_loc
|
||||||
last_detection_info = None
|
else:
|
||||||
|
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
|
||||||
|
current_val = max_val
|
||||||
|
current_loc = max_loc
|
||||||
|
|
||||||
if detected_consecutive_frames >= consecutive_required and last_detection_info:
|
print(f"方法: {method_name}, 匹配值: {current_val:.6f}")
|
||||||
print("333333333")
|
if current_val > best_match_val:
|
||||||
top_left, (w, h), match_val = last_detection_info
|
best_match_val = current_val
|
||||||
center_x = top_left[0] + w // 2
|
best_match_loc = current_loc
|
||||||
center_y = top_left[1] + h // 2
|
best_method = method_name
|
||||||
|
best_method_enum = method
|
||||||
|
|
||||||
print(f"🎯 成功识别爱心图标: 中心坐标=({center_x}, {center_y}), 匹配度={match_val:.4f}")
|
print(f"最佳匹配值: {best_match_val:.6f}") # 打印最佳匹配值,用于调试
|
||||||
return center_y, center_y
|
print(f"最佳匹配方法: {best_method}")
|
||||||
else:
|
print(f"使用尺度: {best_scale}") # 打印使用的尺度
|
||||||
return -1, -1
|
print(f"匹配位置(左上角): {best_match_loc}")
|
||||||
cap.release()
|
|
||||||
print("释放了")
|
|
||||||
return -1, -1
|
|
||||||
|
|
||||||
|
# 设置一个阈值,只有当匹配度高于这个阈值时才认为找到
|
||||||
|
if best_match_val >= threshold:
|
||||||
|
# 计算小图在大图中的中心坐标
|
||||||
|
top_left = best_match_loc # 左上角坐标
|
||||||
|
# 根据最佳尺度调整小图尺寸
|
||||||
|
small_height, small_width = small_image_gray.shape
|
||||||
|
adjusted_width = small_width * best_scale
|
||||||
|
adjusted_height = small_height * best_scale
|
||||||
|
|
||||||
|
# 亚像素级精确匹配
|
||||||
|
if enable_subpixel and best_method_enum is not None:
|
||||||
|
# 调整小图到最佳尺度
|
||||||
|
resized_small = cv2.resize(small_image_gray, (int(adjusted_width), int(adjusted_height)), interpolation=cv2.INTER_AREA)
|
||||||
|
# 重新执行模板匹配以获取更精确的结果
|
||||||
|
result = cv2.matchTemplate(large_image_gray, resized_small, best_method_enum)
|
||||||
|
|
||||||
|
# 在最佳匹配点周围定义一个小区域进行亚像素精确化
|
||||||
|
x, y = top_left
|
||||||
|
window_size = 5
|
||||||
|
x1, x2 = max(0, x - window_size), min(result.shape[1], x + window_size + 1)
|
||||||
|
y1, y2 = max(0, y - window_size), min(result.shape[0], y + window_size + 1)
|
||||||
|
|
||||||
|
# 提取局部区域
|
||||||
|
local_result = result[y1:y2, x1:x2]
|
||||||
|
|
||||||
|
# 拟合二次曲线找到亚像素级最大值
|
||||||
|
if best_method_enum == cv2.TM_SQDIFF_NORMED:
|
||||||
|
min_val, _, min_loc, _ = cv2.minMaxLoc(local_result)
|
||||||
|
subpixel_offset = (min_loc[0] - window_size, min_loc[1] - window_size)
|
||||||
|
else:
|
||||||
|
_, max_val, _, max_loc = cv2.minMaxLoc(local_result)
|
||||||
|
subpixel_offset = (max_loc[0] - window_size, max_loc[1] - window_size)
|
||||||
|
|
||||||
|
# 计算亚像素级精确位置
|
||||||
|
subpixel_x = x + subpixel_offset[0]
|
||||||
|
subpixel_y = y + subpixel_offset[1]
|
||||||
|
|
||||||
|
print(f"亚像素级精确位置: ({subpixel_x:.2f}, {subpixel_y:.2f})")
|
||||||
|
top_left = (subpixel_x, subpixel_y)
|
||||||
|
|
||||||
|
# 使用浮点运算计算中心坐标
|
||||||
|
center_x = top_left[0] + adjusted_width / 2
|
||||||
|
center_y = top_left[1] + adjusted_height / 2
|
||||||
|
print(f"计算得到的中心坐标: ({center_x:.2f}, {center_y:.2f})")
|
||||||
|
|
||||||
|
# 可视化匹配结果
|
||||||
|
if visualize:
|
||||||
|
# 在彩色大图上绘制矩形和中心点
|
||||||
|
large_image_copy = large_image.copy()
|
||||||
|
# 绘制矩形
|
||||||
|
if enable_subpixel:
|
||||||
|
top_left_int = (int(round(top_left[0])), int(round(top_left[1])))
|
||||||
|
adjusted_width_int = int(round(adjusted_width))
|
||||||
|
adjusted_height_int = int(round(adjusted_height))
|
||||||
|
bottom_right = (top_left_int[0] + adjusted_width_int, top_left_int[1] + adjusted_height_int)
|
||||||
|
center_int = (int(round(center_x)), int(round(center_y)))
|
||||||
|
else:
|
||||||
|
bottom_right = (top_left[0] + int(adjusted_width), top_left[1] + int(adjusted_height))
|
||||||
|
center_int = (int(center_x), int(center_y))
|
||||||
|
top_left_int = top_left
|
||||||
|
|
||||||
|
cv2.rectangle(large_image_copy, top_left_int, bottom_right, (0, 255, 0), 2)
|
||||||
|
cv2.circle(large_image_copy, center_int, 5, (0, 0, 255), -1)
|
||||||
|
# 显示图像
|
||||||
|
cv2.imshow('匹配结果', large_image_copy)
|
||||||
|
cv2.waitKey(0)
|
||||||
|
cv2.destroyAllWindows()
|
||||||
|
|
||||||
|
return center_x, center_y
|
||||||
|
else:
|
||||||
|
print(f"匹配值 {best_match_val:.6f} 低于阈值 {threshold},未找到匹配")
|
||||||
|
return -1, -1
|
||||||
|
|
||||||
|
# 根据名称获取图片地址
|
||||||
@classmethod
|
@classmethod
|
||||||
def imagePath(cls, name):
|
def pathWithName(cls, name):
|
||||||
current_file_path = os.path.abspath(__file__)
|
current_file_path = os.path.abspath(__file__)
|
||||||
# 获取当前文件所在的目录(即script目录)
|
# 获取当前文件所在的目录(即script目录)
|
||||||
current_dir = os.path.dirname(current_file_path)
|
current_dir = os.path.dirname(current_file_path)
|
||||||
# 由于script目录位于项目根目录下一级,因此需要向上一级目录移动两次
|
# 由于script目录位于项目根目录下一级,因此需要向上一级目录移动两次
|
||||||
project_root = os.path.abspath(os.path.join(current_dir, '..'))
|
project_root = os.path.abspath(os.path.join(current_dir, '..'))
|
||||||
# 构建资源文件的完整路径,向上两级目录,然后进入 resources 目录
|
# 构建资源文件的完整路径,向上两级目录,然后进入 resources 目录
|
||||||
resource_path = os.path.abspath(os.path.join(project_root, 'resources', name + ".png")).replace('/', '\\\\')
|
resource_path = os.path.abspath(os.path.join(project_root, 'resources', name + ".jpg")).replace('/', '\\\\')
|
||||||
return resource_path
|
return resource_path
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -18,19 +18,19 @@ class ScriptManager():
|
|||||||
session = client.session()
|
session = client.session()
|
||||||
session.appium_settings({"snapshotMaxDepth": 0})
|
session.appium_settings({"snapshotMaxDepth": 0})
|
||||||
|
|
||||||
deviceWidth = client.window_size().width
|
# deviceWidth = client.window_size().width
|
||||||
deviceHeight = client.window_size().height
|
# deviceHeight = client.window_size().height
|
||||||
|
|
||||||
img = client.screenshot()
|
img = client.screenshot()
|
||||||
tempPath = "resources/bgv.png"
|
tempPath = "resources/bgv.jpg"
|
||||||
img.save(tempPath)
|
img.save(tempPath)
|
||||||
|
|
||||||
bgvPath = AiTools.imagePath("bgv")
|
smallImage = AiTools.pathWithName("like")
|
||||||
likePath = AiTools.imagePath("like")
|
bigImage = AiTools.pathWithName("bgv")
|
||||||
|
|
||||||
x, y = AiTools.find_image_in_image(bgvPath, likePath)
|
x, y = AiTools.find_image_in_image(bigImage, smallImage)
|
||||||
print(x, y)
|
print(x, y)
|
||||||
# client.tap(end[0] / 3 - 2, end[1] / 3 - 2)
|
# client.tap(x, y)
|
||||||
|
|
||||||
|
|
||||||
# xml = session.source()
|
# xml = session.source()
|
||||||
|
|||||||
|
Before Width: | Height: | Size: 1.4 MiB |