完成基础养号脚本

This commit is contained in:
zw
2025-08-06 22:11:33 +08:00
parent 1007415212
commit 606a80a30f
20 changed files with 287 additions and 18 deletions

View File

@@ -1,11 +1,53 @@
import os
import re
import cv2
import numpy as np
# 工具类
class AiUtils(object):
# 在屏幕中找到对应的图片
@classmethod
def findImageInScreen(cls, target):
# 加载原始图像和模板图像
image_path = AiUtils.imagePathWithName("bgv") # 替换为你的图像路径
template_path = AiUtils.imagePathWithName(target) # 替换为你的模板路径
# 读取图像和模板,确保它们都是单通道灰度图
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
template = cv2.imread(template_path, cv2.IMREAD_GRAYSCALE)
if image is None:
raise ValueError("背景图无法加载")
if template is None:
raise ValueError("模板图无法加载")
# 获取模板的宽度和高度
w, h = template.shape[::-1]
# 使用模板匹配方法
res = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.7 # 匹配度阈值,可以根据需要调整
loc = np.where(res >= threshold)
# 检查是否有匹配结果
if loc[0].size > 0:
# 取第一个匹配位置
pt = zip(*loc[::-1]).__next__() # 获取第一个匹配点的坐标
center_x = int(pt[0] + w // 2)
center_y = int(pt[1] + h // 2)
# print(f"第一个匹配到的小心心中心坐标: ({center_x}, {center_y})")
return center_x, center_y
else:
print("未找到匹配的目标")
return -1, -1
# 使用正则查找字符串中的数字
@classmethod
def findNumber(cls, str):
# 使用正则表达式匹配数字
@@ -15,15 +57,91 @@ class AiUtils(object):
return None # 如果没有找到数字,返回 None
# 根据名称获取图片地址
# 选择截图
@classmethod
def pathWithName(cls, name):
def screenshot(cls):
image_path = AiUtils.imagePathWithName("bgv") # 替换为你的图像路径
image = cv2.imread(image_path)
# 如果图像过大,缩小显示
scale_percent = 50 # 缩小比例
width = int(image.shape[1] * scale_percent / 100)
height = int(image.shape[0] * scale_percent / 100)
dim = (width, height)
resized_image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
# 创建一个窗口并显示缩小后的图像
cv2.namedWindow("Image")
cv2.imshow("Image", resized_image)
print("请在图像上选择爱心图标区域然后按Enter键确认。")
# 使用selectROI函数手动选择区域
roi = cv2.selectROI("Image", resized_image, showCrosshair=True, fromCenter=False)
# 将ROI坐标按原始图像尺寸放大
x, y, w, h = roi
x = int(x * image.shape[1] / resized_image.shape[1])
y = int(y * image.shape[0] / resized_image.shape[0])
w = int(w * image.shape[1] / resized_image.shape[1])
h = int(h * image.shape[0] / resized_image.shape[0])
# 根据选择的ROI提取爱心图标
if w > 0 and h > 0: # 确保选择的区域有宽度和高度
heart_icon = image[y:y + h, x:x + w]
# 转换为HSV颜色空间
hsv = cv2.cvtColor(heart_icon, cv2.COLOR_BGR2HSV)
# 定义红色的HSV范围
lower_red1 = np.array([0, 120, 70])
upper_red1 = np.array([10, 255, 255])
lower_red2 = np.array([170, 120, 70])
upper_red2 = np.array([180, 255, 255])
# 创建掩模
mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
mask = mask1 + mask2
# 反转掩模,因为我们想要的是爱心图标,而不是背景
mask_inv = cv2.bitwise_not(mask)
# 应用掩模
heart_icon = cv2.bitwise_and(heart_icon, heart_icon, mask=mask_inv)
# 创建一个全透明的背景
height, width, channels = heart_icon.shape
roi = np.zeros((height, width, channels), dtype=np.uint8)
# 将爱心图标粘贴到透明背景上
for c in range(channels):
roi[:, :, c] = np.where(mask_inv == 255, heart_icon[:, :, c], roi[:, :, c])
# 图片名称
imgName = "temp.png"
# 保存结果
cv2.imwrite(imgName, roi)
# 显示结果
cv2.imshow("Heart Icon with Transparent Background", roi)
cv2.waitKey(0)
cv2.destroyAllWindows()
else:
print("未选择有效区域。")
# 根据名称获取图片完整地址
@classmethod
def imagePathWithName(cls, name):
current_file_path = os.path.abspath(__file__)
# 获取当前文件所在的目录即script目录
current_dir = os.path.dirname(current_file_path)
# 由于script目录位于项目根目录下一级因此需要向上一级目录移动两次
project_root = os.path.abspath(os.path.join(current_dir, '..'))
# 构建资源文件的完整路径,向上两级目录,然后进入 resources 目录
resource_path = os.path.abspath(os.path.join(project_root, 'resources', name + ".jpg")).replace('/', '\\')
resource_path = os.path.abspath(os.path.join(project_root, 'resources', name + ".png")).replace('/', '\\')
return resource_path
# AiUtils.screenshot()