合并代码

This commit is contained in:
2025-10-23 19:55:58 +08:00
parent 4966a659aa
commit 26057d4afa
24 changed files with 342 additions and 4489 deletions

View File

@@ -26,7 +26,7 @@ def _force_utf8_everywhere():
except Exception:
pass
# _force_utf8_everywhere()
_force_utf8_everywhere()
class LogManager:
"""

233
Utils/OCRUtils.py Normal file
View File

@@ -0,0 +1,233 @@
import cv2
import numpy as np
from typing import List, Tuple, Union, Optional
from PIL import Image
ArrayLikeImage = Union[np.ndarray, str, Image.Image]
class OCRUtils:
@classmethod
def _to_gray(cls, img: ArrayLikeImage) -> np.ndarray:
"""
接受路径/np.ndarray/PIL.Image统一转为灰度 np.ndarray。
"""
# 路径
if isinstance(img, str):
arr = cv2.imread(img, cv2.IMREAD_GRAYSCALE)
if arr is None:
raise FileNotFoundError(f"图像加载失败,请检查路径: {img}")
return arr
# PIL.Image
if isinstance(img, Image.Image):
return cv2.cvtColor(np.array(img.convert("RGB")), cv2.COLOR_RGB2GRAY)
# numpy 数组
if isinstance(img, np.ndarray):
if img.ndim == 2:
return img # 已是灰度
if img.ndim == 3:
return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
raise ValueError("不支持的图像维度(期望 2D 灰度或 3D BGR/RGB")
raise TypeError("large_image 类型必须是 str / np.ndarray / PIL.Image.Image")
@classmethod
def non_max_suppression(
cls,
boxes: List[List[float]],
scores: Optional[np.ndarray] = None,
overlapThresh: float = 0.5
) -> np.ndarray:
"""
boxes: [ [x1,y1,x2,y2], ... ]
scores: 每个框的置信度(用于“按分数做 NMS”。若为 None则退化为按 y2 排序的经典近似。
返回: 经过 NMS 保留的 boxes(int) ndarray形状 (N,4)
"""
if len(boxes) == 0:
return np.empty((0, 4), dtype=int)
boxes = np.asarray(boxes, dtype=np.float32)
x1, y1, x2, y2 = boxes.T
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
if scores is None:
order = np.argsort(y2) # 经典写法
else:
scores = np.asarray(scores, dtype=np.float32)
order = np.argsort(scores)[::-1] # 分数从高到低
keep = []
while order.size > 0:
i = order[0] if scores is not None else order[-1]
keep.append(i)
rest = order[1:] if scores is not None else order[:-1]
xx1 = np.maximum(x1[i], x1[rest])
yy1 = np.maximum(y1[i], y1[rest])
xx2 = np.minimum(x2[i], x2[rest])
yy2 = np.minimum(y2[i], y2[rest])
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / areas[rest]
inds = np.where(ovr <= overlapThresh)[0]
order = rest[inds]
return boxes[keep].astype(int)
# @classmethod
# def find_template(
# cls,
# template_path: str,
# large_image: ArrayLikeImage,
# threshold: float = 0.8,
# overlapThresh: float = 0.5,
# return_boxes: bool = False
# ) -> Union[List[Tuple[int, int]], Tuple[List[Tuple[int, int]], np.ndarray]]:
# """
# 在 large_image 中查找 template_path 模板的位置。
# - large_image 可为文件路径、np.ndarray 或 PIL.Image
# - threshold: 模板匹配阈值TM_CCOEFF_NORMED
# - overlapThresh: NMS 重叠阈值
# - return_boxes: True 时同时返回保留的框数组 (N,4)
#
# 返回:
# centers 或 (centers, boxes)
# centers: [(cx, cy), ...]
# boxes: [[x1,y1,x2,y2], ...] (np.ndarray, int)
# """
# # 模板(灰度)
# template = cv2.imread(template_path, cv2.IMREAD_GRAYSCALE)
# if template is None:
# raise FileNotFoundError(f"模板图像加载失败,请检查路径: {template_path}")
#
# # 大图(灰度)
# gray = cls._to_gray(large_image)
#
# # 模板尺寸
# tw, th = template.shape[::-1]
#
# # 模板匹配(相关系数归一化)
# result = cv2.matchTemplate(gray, template, cv2.TM_CCOEFF_NORMED)
#
# # 阈值筛选
# ys, xs = np.where(result >= threshold)
# if len(xs) == 0:
# return ([], np.empty((0, 4), dtype=int)) if return_boxes else []
#
# # 收集候选框与分数
# boxes = []
# scores = []
# for (x, y) in zip(xs, ys):
# boxes.append([x, y, x + tw, y + th])
# scores.append(result[y, x])
#
# # 按分数做 NMS
# boxes_nms = cls.non_max_suppression(boxes, scores=np.array(scores), overlapThresh=overlapThresh)
#
# # 计算中心点
# centers = [((x1 + x2) // 2, (y1 + y2) // 2) for (x1, y1, x2, y2) in boxes_nms]
#
#
#
# if return_boxes:
# return centers, boxes_nms
#
#
# return centers
@classmethod
def find_template(
cls,
template_path: str,
large_image: ArrayLikeImage,
threshold: float = 0.8,
overlapThresh: float = 0.5,
return_boxes: bool = False
) -> Union[List[Tuple[int, int]], Tuple[List[Tuple[int, int]], np.ndarray]]:
"""
在 large_image 中查找 template_path 模板的位置。
- large_image 可为文件路径、np.ndarray 或 PIL.Image
- threshold: 模板匹配阈值TM_CCOEFF_NORMED
- overlapThresh: NMS 重叠阈值
- return_boxes: True 时同时返回保留的框数组 (N,4)
若检测结果为空,则在相同阈值下最多重试三次(共 3 次尝试)。
返回:
centers 或 (centers, boxes)
centers: [(cx, cy), ...]
boxes: [[x1,y1,x2,y2], ...] (np.ndarray, int)
"""
# 模板(灰度)
template = cv2.imread(template_path, cv2.IMREAD_GRAYSCALE)
if template is None:
raise FileNotFoundError(f"模板图像加载失败,请检查路径: {template_path}")
# 大图(灰度)
gray = cls._to_gray(large_image)
# 模板尺寸
tw, th = template.shape[::-1]
# 内部:执行一次匹配并返回 (centers, boxes_nms)
def _match_once(cur_threshold: float):
# 模板匹配(相关系数归一化)
result = cv2.matchTemplate(gray, template, cv2.TM_CCOEFF_NORMED)
# 阈值筛选
ys, xs = np.where(result >= cur_threshold)
if len(xs) == 0:
return [], np.empty((0, 4), dtype=int)
# 收集候选框与分数
boxes = []
scores = []
for (x, y) in zip(xs, ys):
boxes.append([int(x), int(y), int(x + tw), int(y + th)])
scores.append(float(result[y, x]))
# 按分数做 NMS
boxes_nms = cls.non_max_suppression(
boxes,
scores=np.asarray(scores, dtype=np.float32),
overlapThresh=overlapThresh
)
# 计算中心点(转为 Python int
centers = [(int((x1 + x2) // 2), int((y1 + y2) // 2))
for (x1, y1, x2, y2) in boxes_nms]
# 统一为 np.ndarray[int]
boxes_nms = np.asarray(boxes_nms, dtype=int)
return centers, boxes_nms
# ===== 重试控制(最多 3 次)=====
MAX_RETRIES = 3
THRESHOLD_DECAY = 0.0 # 如需越试越宽松,可改为 0.02~0.05;不需要则保持 0
MIN_THRESHOLD = 0.6
cur_threshold = float(threshold)
last_centers, last_boxes = [], np.empty((0, 4), dtype=int)
for attempt in range(MAX_RETRIES):
centers, boxes_nms = _match_once(cur_threshold)
if centers:
if return_boxes:
return centers, boxes_nms
return centers
# 记录最后一次(若最终失败按规范返回空)
last_centers, last_boxes = centers, boxes_nms
# 为下一次尝试准备(这里默认不衰减阈值;如需可打开 THRESHOLD_DECAY
if attempt < MAX_RETRIES - 1 and THRESHOLD_DECAY > 0.0:
cur_threshold = max(MIN_THRESHOLD, cur_threshold - THRESHOLD_DECAY)
# 全部尝试失败
if return_boxes:
return last_centers, last_boxes
return last_centers