feat(vector): 新增向量搜索与文本语义检索接口

- DemoController 增加 /testSearch、/tsetSearchText 端点
- QdrantVectorService 补充 searchPoint、searchText、indexText 方法
- 新增 SearchEmbedReq、TextSearchReq、QdrantSearchItem 等 DTO/VO
- 调整 LLM 模型为 qwen3-embedding-0.6b 并开放对应接口免鉴权
This commit is contained in:
2025-11-14 21:31:16 +08:00
parent f60ee2df3d
commit ef7dd5b370
8 changed files with 228 additions and 20 deletions

View File

@@ -53,7 +53,8 @@ public class LLMConfig {
this.openAiApi(),
MetadataMode.EMBED,
OpenAiEmbeddingOptions.builder()
.model("qwen/qwen3-embedding-8b")
.model("qwen/qwen3-embedding-0.6b")
.dimensions(2048)
.user("user-6")
.build(),
RetryUtils.DEFAULT_RETRY_TEMPLATE);

View File

@@ -38,7 +38,9 @@ public class SaTokenConfigure implements WebMvcConfigurer {
"/demo/talk",
"/user/appleLogin",
"/demo/embed",
"/demo/testSaveEmbed"
"/demo/testSaveEmbed",
"/demo/testSearch",
"/demo/tsetSearchText"
};
}
@Bean

View File

@@ -1,14 +1,15 @@
package com.yolo.keyborad.controller;
import cn.hutool.json.JSON;
import cn.hutool.json.JSONUtil;
import com.yolo.keyborad.common.BaseResponse;
import com.yolo.keyborad.common.ResultUtils;
import com.yolo.keyborad.model.dto.EmbedSaveReq;
import com.yolo.keyborad.model.dto.IosPayVerifyReq;
import com.yolo.keyborad.model.dto.SearchEmbedReq;
import com.yolo.keyborad.model.dto.TextSearchReq;
import com.yolo.keyborad.model.vo.QdrantSearchItem;
import com.yolo.keyborad.service.impl.QdrantVectorService;
import io.qdrant.client.QdrantClient;
import io.swagger.v3.oas.annotations.Operation;
import io.swagger.v3.oas.annotations.Parameter;
import io.swagger.v3.oas.annotations.tags.Tag;
@@ -91,4 +92,20 @@ public class DemoController {
, JSONUtil.toJsonStr(embedSaveReq.getRecordItem()));
return ResultUtils.success(true);
}
@PostMapping("/testSearch")
@Operation(summary = "测试搜索向量接口", description = "测试搜索向量接口")
@Parameter(name = "userInput",required = true,description = "测试搜索向量接口")
public BaseResponse<List<QdrantSearchItem>> testSearch(@RequestBody SearchEmbedReq searchEmbedReq) {
return ResultUtils.success(qdrantVectorService.searchPoint(searchEmbedReq.getUserInputEmbed(), 3));
}
@PostMapping("/tsetSearchText")
@Operation(summary = "测试搜索语义接口", description = "测试搜索语义接口")
@Parameter(name = "userInput",required = true,description = "测试搜索语义接口")
public BaseResponse<List<QdrantSearchItem>> testSearchText(@RequestBody TextSearchReq textSearchReq) {
return ResultUtils.success(qdrantVectorService.searchText(textSearchReq.getUserInput()));
}
}

View File

@@ -0,0 +1,15 @@
package com.yolo.keyborad.model.dto;
import lombok.Data;
import java.util.List;
/*
* @author: ziin
* @date: 2025/11/14 18:12
*/
@Data
public class SearchEmbedReq {
private List<Float> userInputEmbed;
}

View File

@@ -0,0 +1,12 @@
package com.yolo.keyborad.model.dto;
import lombok.Data;
/*
* @author: ziin
* @date: 2025/11/14 19:50
*/
@Data
public class TextSearchReq {
private String userInput;
}

View File

@@ -0,0 +1,24 @@
package com.yolo.keyborad.model.vo;
import lombok.Data;
import java.util.List;
// package 自己按项目结构放
@Data
public class QdrantSearchItem {
/** 向量 ID你插入时用的是 long */
private Long id;
/** 相似度得分 */
private Float score;
/** 你存进去的 payload 文本(或者 JSON 字符串) */
private String payload;
/** 完整向量(如果不想暴露可以去掉这个字段) */
private List<Float> vector;
// getter / setter 省略,也可以用 Lombok @Data
}

View File

@@ -0,0 +1,18 @@
package com.yolo.keyborad.model.vo;
import io.qdrant.client.grpc.JsonWithInt;
import lombok.Data;
import java.util.Map;
/*
* @author: ziin
* @date: 2025/11/14 18:36
*/
@Data
public class VectorSearchResultVO {
private String id;
private double score;
private String payload;
}

View File

@@ -1,13 +1,16 @@
package com.yolo.keyborad.service.impl;
import com.google.common.primitives.Floats;
import com.yolo.keyborad.common.ErrorCode;
import com.yolo.keyborad.exception.BusinessException;
import com.yolo.keyborad.model.vo.QdrantSearchItem;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.grpc.Collections;
import io.qdrant.client.grpc.JsonWithInt;
import io.qdrant.client.grpc.Points;
import jakarta.annotation.Resource;
import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.embedding.Embedding;
import org.springframework.ai.embedding.EmbeddingModel;
import org.springframework.ai.embedding.EmbeddingResponse;
import org.springframework.stereotype.Service;
import java.util.List;
@@ -15,8 +18,10 @@ import java.util.Map;
import java.util.concurrent.ExecutionException;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.QueryFactory.nearest;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;
import static io.qdrant.client.WithPayloadSelectorFactory.enable;
@Service
@@ -28,6 +33,9 @@ public class QdrantVectorService {
private static final String COLLECTION_NAME = "test_document";
@Resource
private EmbeddingModel embeddingModel;
/**
* 插入/更新一条向量数据
*
@@ -37,20 +45,6 @@ public class QdrantVectorService {
*/
public void upsertPoint(long id, List<Float> vector,String payload){
// // 1. 确保 collection 存在(没有就创建一次即可)
// try {
// qdrantClient.createCollectionAsync(
// COLLECTION_NAME,
// Collections.VectorParams.newBuilder()
// .setSize(vector.size()) // 向量维度
// .setDistance(Collections.Distance.Cosine) // 相似度度量
// .build()
// ).get(); // 简单起见直接 get(),生产建议在启动时提前创建好
// } catch (InterruptedException | ExecutionException e) {
// log.error("创建 collection 失败", e);
// throw new BusinessException(ErrorCode.OPERATION_ERROR);
// }
try {
qdrantClient.upsertAsync(
COLLECTION_NAME,
@@ -66,6 +60,131 @@ public class QdrantVectorService {
log.error("upsert point 失败", e);
throw new BusinessException(ErrorCode.OPERATION_ERROR);
}
}
// public List<VectorSearchResultVO> searchPoint(List<Float> userInput) {
// try {
// Points.QueryPoints query = Points.QueryPoints.newBuilder()
// .setCollectionName(COLLECTION_NAME) // ★ 必须设置
// .setQuery(nearest(userInput))
// .build();
//
// List<Points.BatchResult> batchResults = qdrantClient.queryBatchAsync(
// COLLECTION_NAME,
// List.of(query)
// ).get();
//
// return batchResults.stream()
// .map(p -> {
// VectorSearchResultVO vo = new VectorSearchResultVO();
// vo.setId(String.valueOf(p.getResult(0).getId())); // 或者 p.getId().getUuid()
// vo.setScore(p.getResult(0).getScore());
// vo.setPayload(p.getResult(0).getPayloadMap());
// return vo;
// })
// .toList();
//
// } catch (InterruptedException | ExecutionException e) {
// log.error("search point 失败", e);
// throw new BusinessException(ErrorCode.OPERATION_ERROR);
// }
// }
public List<QdrantSearchItem> searchPoint(List<Float> userVector, int limit) {
try {
Points.QueryPoints query = Points.QueryPoints.newBuilder()
.setCollectionName(COLLECTION_NAME) // ★ 必须
.setQuery(nearest(userVector)) // ★ 语义向量
.setLimit(limit) // TopK
.setWithPayload(enable(true)) // ★ 带上 payload
.build();
List<Points.BatchResult> batchResults = qdrantClient.queryBatchAsync(
COLLECTION_NAME,
List.of(query)
).get();
Points.BatchResult batchResult = batchResults.get(0);
// 3. 把 Protobuf 的 ScoredPoint 转成你的 DTO
return batchResult.getResultList().stream()
.map(p -> {
QdrantSearchItem item = new QdrantSearchItem();
// id你插入时用的是 setId(id(id)),所以这里取 num
if (p.getId().hasNum()) {
item.setId(p.getId().getNum());
}
// score
item.setScore(p.getScore());
// payload你之前是 putAllPayload(Map.of("payload", value(payload)))
// 这里从 Struct 里拿 "payload" 字段
var fieldsMap = p.getPayloadMap();
var payloadValue = fieldsMap.get("payload");
if (payloadValue != null && payloadValue.hasStringValue()) {
item.setPayload(payloadValue.getStringValue());
}
// vector你插入时用的是 vectors(vector),即 unnamed 单向量
// proto 结构一般是 Vectors.vector.data[]
if (p.getVectors().hasVector()) {
List<Float> vec = p.getVectors().getVector().getDataList();
item.setVector(vec);
}
return item;
})
.toList();
} catch (InterruptedException | ExecutionException e) {
log.error("search point 失败", e);
throw new BusinessException(ErrorCode.OPERATION_ERROR);
}
}
/**
* 把一段文本做 embedding 然后写入 Qdrant
*
* @param id 业务 ID比如业务表主键
* @param text 用来做向量的文本(一般是内容)
*/
public void indexText(long id, String text) {
// 1. 文本 → 向量
List<Float> vector = embedTextToVector(text);
// 2. 存到 Qdrantpayload 里顺便存原文
upsertPoint(id, vector, text);
}
private List<Float> embedTextToVector(String text) {
EmbeddingResponse response = embeddingModel.embedForResponse(List.of(text));
Embedding embedding = response.getResult(); // 就一条
// Spring AI 里一般是 List<Double>
float[] output = embedding.getOutput();
// 转成 Qdrant 需要的 List<Float>
return Floats.asList(output);
}
public List<QdrantSearchItem> searchText(String userInput) {
long t0 = System.currentTimeMillis();
List<Float> floats = this.embedTextToVector(userInput);
long t1 = System.currentTimeMillis();
List<QdrantSearchItem> qdrantSearchItems = this.searchPoint(floats, 3);
long t2 = System.currentTimeMillis();
log.info("embedding = {} ms, qdrant = {} ms, total = {} ms",
(t1 - t0), (t2 - t1), (t2 - t0));
return qdrantSearchItems;
}
}